

Tetrahedron Letters, Vol. 35, No 20, pp. 3281-3284, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$6.00+0.00

0040-4039(94)E0579-M

HOMOALLYL CYANIDE AND *N*-ALLYLKETENE IMINE; A [3,3]SIGMATROPIC EQUILIBRIUM

Reinhard Brückner¹ and Rolf Huisgen^{*}

Institut für Organische Chemie der Universität München Karlstr. 23, D-80333 München, Germany

Abstract The γ, δ -unsaturated nitrile 2 equilibrates at room temperature with the N-allylketene imine 3. Deuterium labeling established an intramolecular rearrangement, and the small influence of solvent polarity on the rate constants is in accordance with a concerted [3,3]sigmatropic shift.

The ene reaction of 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF, 1) ² with 2,3-dimethyl-2-butene furnished 2³. When the conversion in $CDCl_3$ or C_6D_6 at 25°C was monitored by ¹H NMR spectroscopy, 2 turned out to be the primary product which subsequently equilibrated with the isomeric ketene imine 3.

Pure 2 was isolated from the equilibrium mixture (4 d, CH_2Cl_2 , 25°C) by distillation at 60°C/10⁻⁴ torr (84%) and crystallization from pentane at -15°C, mp 65°C (after recryst.)⁴. The ¹H and ¹⁹F resonances of 2 were recorded immediately after dissolving in CDCl₃. Two vinyl-H at δ_H 5.22 and 5.39, s for 4-(CH₃)₂ at 1.57 and 5-CH₃ at 2.04 established the shifted double bond in 2; d at δ_F -61.8 ($J_{F,H} = 8.1$ Hz) for two CF₃ groups and sept at δ_H 3.64 for 2-H revealed the type of ene product ³ with terminal trifluoromethyl groups.

New resonances appeared in the NMR spectra of 2 on storing the CDCl₃ solution, and a 50:50 equilibrium is approached with a half-reaction time of 12.3 h at 25°C. Singlets at $\delta_{\rm H}$ 1.76 for one CH₃, 1.79 for 2 CH₃, and at 4.40 for N-CH₂ indicate 3 as substitution product of 2,3-dimethyl-2-butene; d at $\delta_{\rm F}$ -68.2 and sept at $\delta_{\rm H}$ 3.47 ($J_{\rm H,F}$ = 7.7 Hz) signal the group -CH(CF₃)₂. δ (alkenyl-CH₂) occurs at lower field and δ (CF₃) at higher field than expected for 4 on the basis of δ (4-H₂) 2.9 - 3.1 and δ (CF₃) in compounds structurally related to 4 ^{3,5}. The lower solubility of 2 prevented the isolation of 3.

Like many polynitriles with neighboring CF_3 groups, 2 does not show a C=N stretching frequency in the IR spectrum (CCl₄). However, the rearranged isomer 3 displays the sharp C=N absorption of a conjugated nitrile at 2218 cm⁻¹, and the band at 2075 cm⁻¹ for C=C=N belongs to the most intense of the spectrum. These values correspond to 2210 and 2140 cm⁻¹ reported for an α -cyanoketene imine ⁶; 2031 and 2019 cm⁻¹ were observed in our laboratory for the C=C=N stretching frequency of two cyclic 7-membered, CF₃-substituted ketene imines ^{7,8}. The trifluoromethyl groups apparently increase the thermal stability of the ketene imine.

In 1965 Brannock and Burpitt ⁹ converted N-allylcarboxamides 5 into imidoyl chlorides by PCl_5 or phosgene; refluxing with triethylamine in benzene or THF led to nitriles 7; the ketene imine 6 was a plausible intermediate, although its isolation or spectroscopic analysis were not accomplished. A Claisen-type rearrangement, $6 \rightarrow 7$, was proposed. Recently Walters et al. ^{10,11} studied further examples of $5 \rightarrow 7$ in a "one-pot procedure" at room temperature with various reagents, 2 equiv. $(C_6H_5)_3P + 2 CCl_4 + 3 (C_2H_5)_3N$ being the best. The "3-aza Claisen" rearrangement of the supposed ketene imine intermediate 6 proceeded at room temperature whereas the [3,3]sigmatropic equilibration of 1-hexene-5-yne with 1,2,5-hexatriene, the all-carbon analog, requires > 300°C ¹².

Figure 1. Solvent dependence of the rate constants for the [3,3]sigmatropic rearrangement $2 \Rightarrow 3$ (solvent key in Table 1)

Table 1. Rate Constants at 25°C for the [3,3]Sigmatropic Rearrangement 2 - 3

	Solvent	$k_1 k_{-1} k_{-1} k_{-1} k_{-1}$		% 3 at Equilib.
1	$Cl_2C = Cl_2C$	3.0	3.7	44
2	ČCl₄	2.8	3.5	44
3	C ₆ D ₆	4.7	3.8	56
4	o-C6H4Cl2	8.9	9.9	47
5	CDCl ₃	7.8	7.8	50
6	CD_2Cl_2	12	14	47
7	CD ₃ CN	17	17	50

Pure 2 was equilibrated with 3 in various solvents at 25°C, and the 2/3 ratio was monitored by the ¹H NMR integrals of the vinylic methyl groups as a function of time ¹³; k_1 and k_2 were evaluated with the rate law of reversible first-order reactions ¹⁴. The rate constants (Table 1) increase only by a factor of 6 in going from tetrachloroethylene to acetonitrile indicating a modest increase of charge separation in the activation process, well in accordance with a concerted [3,3]sigmatropic rearrangement. Fairly good linear relations resulted for the plots of log k vs. Reichardt's parameter E_T of solvent polarity ¹⁵ (Fig. 1). Interestingly, the equilibrium constant, K = 0.8 - 1.2, does not depend on solvent polarity.

Although the isomerization $2 \rightarrow 3$ is hardly conceivable as a process involving a dissociation or ionization, we probed the *intramolecular* course by reacting $(D_3C)_2C = C(CH_3)_2$ ¹⁶ with 1. The ene product, isolated after 4 d as described above, contained 8 and 9 in the ratio 82:18, corresponding to $(k_H/k_D)_{intra} = 4.5$ at 25°C. After several d of equilibration with the ketene imine isomer, the MS analysis of the isolated deuterated 2 showed only M⁺ 304 (6 D incorporated) with m/z = 305 only negligibly deviating from the ¹³C isotope peak. A crossing over of fragments resulting from 8 and 9 should have led to some 10 (D_7) and 11 (D_5) .

Why are 2 and 3 at nearly the same free energy level in contrast to the irreversible rearrangement $6 \rightarrow 7$? The 3,4-bond of 2 signalizes a hexasubstituted ethane; strain relief by breaking this bond may play a role.

ACKNOWLEDGMENT

We express our gratitude to the *Fonds der Chemischen Industrie*, Frankfurt, for supporting the research projects of this and the following communication. We thank Mr. *H. Huber* for his competent help in the spectroscopic measurements and Mr. *H. Schulz*, and Mrs. *M. Schwarz* for the microanalyses.

REFERENCES AND NOTES

Dedicated to Professor Wolfgang Steglich, München, on the occasion of his 60th birthday.

- 1. New address: Institut für Organische Chemie der Universität, Tammannstr. 2, 37077 Göttingen.
- 2. Middleton, W. J. J. Org. Chem. 1965, 30, 1402-1407.
- 3. Huisgen, R.; Brückner, R. J.Org. Chem. 1991, 56, 1679-1681.
- 4. Satisfactory elemental analyses have been obtained for all new compounds.

- 5. Brückner, R. Ph.D. Thesis, Univ. of Munich, 1984.
- 6. Abel, E. W.; Crow, J. P.; Wingfield, J. N., J. Chem. Soc., Dalton Trans. 1972, 787-790.
- 7. Huisgen, R.; Langhals, E.; Mloston, G.; Oshima, T. Heterocycles 1989, 29, 2069-2074.
- 8. Huisgen, R.; Langhals, E.; Nöth, H. J.Org. Chem. 1990, 55, 1412-1414.
- 9. Brannock, K. C.; Burpitt, R. D. J. Org. Chem. 1965, 30, 2564-2565.
- 10. Walters, M. A.; McDonough, C. S.; Brown, P. S.; Hoem, A. B. Tetrahedron Lett. 1991, 34, 179-182.
- 11. Walters, M. A.; Hoem, A. B.; Arcand, H. R.; Hegeman, A. D.; McDonough, C. S. Tetrahedron Lett. 1993, 34, 1453-1456.
- 12. Huntsman, W. D., In *The Chemistry of Ketenes, Allenes, and Related Compounds*; S. Patai, Ed.; John Wiley and Sons, Inc.: New York 1980, pp 521, 603.
- 13. 0.18 0.22 mmol of 2 and 0.4 0.6 g solvent were weighed into the NMR tube. For each concentration measurement the sum of the NMR integrals was divided into the shares of 2 and 3. Per run 8 17 analyses were taken within 13 18 hr, dependent on the solvent. Because the equilibrium is not reached in this time, we varied provisional values for A_e (nitrile 2) at equilibrium in

$$k_1 t = \frac{A_0 \cdot A_e}{A_0} \ln \frac{A_0 \cdot A_e}{A_t \cdot A_e}$$

until the plots for this expression vs. time were linear. This dynamic determination of A_e and K is superior to the static one.

- Huisgen, R. Ausführung kinetischer Versuche; In Methoden der organischen Chemie (Houben-Weyl), 4th ed.; Müller, E., Ed.; G. Thieme, Stuttgart 1955: Vol. 3/1, pp 101-162.
- 15. Reichardt, C. Angew. Chem. Int. Ed. Engl. 1979, 18, 98-110.
- Prepared from isobutyric acid dianion with [D₆]acetone (24%), formation of B-lactone with TsOH (64%), and thermolysis at 180-230°C (83%).

(Received in Germany 9 March 1994; accepted 18 March 1994)